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1.0 INTRODUCTION

It is generally held that the more powerful programming

languages are those that provide the user with functions for the

manipulation of "bulk" data: the array operators of APL, and the

functionals such as MAPCAR in LISP are well known

examples [14, 17].. These operators allow the use of simple

expressions for what would otherwise have to be implemented

through more complicated code containing explicit control

structures such as iteration. The same is true for database query

languages. Consider a query that finds the names of employees who

are under 30 and are paid more than the average salary for all

employees.

retrieve NAHE from EMPLOYEE where AGE < 30 and

SALARY > average(retrieve SALARY from EMPLOYEE)

There are a number of problems involved in interpreting such a

query and the purpose of this paper is to describe an evaluation

technique that not only overcomes these problems, but also allows

arbitrarily complex queries or functions to be evaluated. The

form retrieve..from.. is an expression which, as far as the user

is concerned, produces a sequence or set of objects. The use of

such expressions greatly simplifies the process of constructing a

database query, which would otherwise call for a relatively
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complicated. iterative program. (The syntax of the example above

4s not intended as an example of a specific language; but it is

not unlike SEQUEL (6) and some of the more concise query languages

for hierarchical or network databases (131.)

To our knowledge there are two methods of implementing such a

query that are currently in use. One approach, which we shall

call the "immediate" approach, is to instantiate physically the

sequences or sets produced by the retrieve expression. A

relational data management system would be quite likely to create

an intermediate relation for the result of the retrieve SALARY..

expression, and this would have to be temporarily held in

secondary storage. The second approach, the "translation" method,

is to translate the program into an iterative program which is

then run against the database. In this case, the query above

would be translated into two iterative lcops: one to traverse the~

EMPLOYEE and print out NAMEs, the other to traverse the EMPLOYEE

file and compute the average SALARY. Both approaches have

disadvantages. The immediate method reqivires substantial

quantities of temporary working space, and since this is usually

available only as secondary storage, results in rather poor

execution times for queries. The translation method usually

permits only a limited number of program forms, limiting the user

to relatively simple queries% those that can be constructed out

of iterations over the available data.
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Another problem arises with optimization: the crudest

implementation of the query above would call for the

sub-expression

average(retrieve SALARY from EMPLOYEE)

to be computed for each retrieval of an EMPLOYEE in the

surrounding retrieve NAME from .. expression. This is most

inefficient, and any reasonable implementation would precompute

the average. However, this is still not optimal: in the case

that there are no EMPLOYEEs that satisfy the condition AGE < 30,

there is no need ever to compute the average SALARY. The optimal

iterative program would traverse the employee file looking for an

instance that satisfies AGE < 30 and, on encountering the first

such instance, compute the average and set a flag indicating that

it had been computed. This solution is hardly "structured" code

and would probably be overlooked by most applications programmers,

however it is an example of the kind of optimization that can in

practice lead to substantial savings in the amount of i/o required

to evaluate a query.

We shall describe a method for the evaluation of database

queries which overcomes the disadvantages of both the immediate

and the translation approaches; and which automatically performs

the kind of optimization just described. The method exploits

"lazy" evaluation techniques. Although these have been widely

discussed [4, 16) and implemented [10, 24] for a number of

high-level languages, we believe that they will prove important in

,77..~1
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the evaluation of database queries, where, because of space

limitations, it is physically impossible to perform the in-core

manipulation of lists or arrays in the fashion of LISP or APL.

Some related suggestions have been made for databases; in

particular it has been suggested 122] that relational operators

could in certain circumstances be "pipelined", leading to

substantial savings in the storage required for intermediate

relations.

In order to describe how this method may be implemented, we

shall first describe a specific query language: the Functional

Query Language, FQL. The syntax of FQL is not intended as an

ideal syntax for anyone except, perhaps, mathematicians. It is

meant as a formalism for the underlying control structures of

database queries. For example, it is an easy matter to represent

retrieve..from..-where.. in terms of the FQL operators. While it

would be possible to interpret a conventional query language

directly by using the techniques described in this paper, we shall

use the FQL formalism because it appears to us to be more

fundamental in that it allows the construction of any program;

not a limited set of database access forms. The second section of

this paper will therefore describe FQL.

The next section of the paper will specify the basic data

structures and procedures for the implementation of FQL. While

this will be done without reference to a specific programming

language, it is hoped that anyone familiar with programming

languages such as Pascal or ADA [1, 27], which have good methods



Page 6

for defining data types, will have no difficulty in translating

our formal expression of the data structures and procedures into

working code.

Following the formal description of the implementation, we

shall provide some observations on the implementation which may be

of practical use to people who wish to build an interpreter along

these lines. This includes some details of physical

representation of data structures, garbage collection, and type

checking. A final section describes some further improvements and

optimization techniques that the authors have not yet implemented,

but see as valuable extensions to the technique.

2.0 THE FUNCTIONAL QUERY LANGUAGE FOL

FQL is based upon a Functional Programming system as

suggested by Backus [2]. Rather than using explicit control

structures, a few operators or functional forms are used to

construct new functions, or database queries out of existing

functions. Consider a very simple FQL query:

|EMPLOYEE.*NAME;

Informally this reads: take the sequence of all EMPLOYEEs and

create a sequence of their NAMEs. The result of typing in this

query is that a sequence of names is printed out. Looking more

closely at the query, it is built out of two functions, !EMPLOYEE

and NAME, which are both functions that are defined in the

database. IEMPLOYEE is a function that generates a sequence of

EMPLOYEEs; NAME is a function that takes an EMPLOYEE as argument
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and produces a character string as result. * is an operator: in

this query it operates on the function NAME, which works on single

EMPLOYEEs, to create a function *NAME that operates on sequences

of EMPLOYEEs to produce a sequence of character strings. The

MAPCAR function of LISP is a direct analog of this operator.

Finally, the symbol ". denotes the composition of the two

functions 1EMPLOYEE and *NAME into a function that creates a

sequence of character strings. Note that the composition is in

"reverse polish" notation. This is a deliberate choice resulting

from the desire to have queries correspond to the database "access

path".

Function Type

NAME: EMPLOYEE -> STRING

IEMPLOYEE: -> *EMPLOYEE

•N.M: *EMPLOYEE -> *STRING

!EMPLOYEE.*NAME: -> *STRING

Figure 1. Some simple FQL
functions and their types.

Figure 1 shows the functions that constitute this query

together with their types. Note that the symbol "*" also has a

meaning when applied to a type and denotes a sequence of elements

of that type; thus *STRING denotes a sequence of character

strings. The type of a function describes the types of the

objects in its domain and range. EMPLOYEE denotes a data type,

and IEMPLOYEE is a function that generates all instances of that

data type; both 1EMPLOYEE and the whole query are functions with

I F61,-WI
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no arguments. We may use the notion of data types to describe the

formal data model that is used by FQL. A database consists of a

collection of types (often called classes) and functions (often

called attributes) that have these types as ranges and domains. A

somewhat richer version of this model has been proposed by

Shipman, who also proposes a query language based upon a few

simple iterative constructs. It is possible that the techniques

described here could serve to implement Shipman's proposals. The

three major data models, relational, hierarchical and network, can

all be represented within the functional framework and details of

this are discussed in [3, 21]. As an example of the functional

model, figure 2 shows a simple database and some of the functions

it defines.

. .. ,0-
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REPARTMENL

Function Type

!DEPARTMENT: -> *DEPARTMENT
J lEMPLOM'EE: -> *EMPLOYEE

DNSRNE: DEPARTENT -> STRIAEG
NNME: EMPLOYEE-> STRING

SAL: EMPLOYEE -> NUM
AGE: EMPLOYEE -> NUM

MARRIED: EMPLOYEE -> BOOL
DEPT: EMPLOYEE -> DEPARTMENTIIDBPT: DEPARTMENT -> *EMPLOYEE
NAME: STRING -> *EMPLOYEE

Figure 2. A simple database and the
functions it provides.

This figure describes a database containing five types of

which two, EMPLOYEE and DEPARTMENT are specific to the database,

and three, NUM(eric), STRING and OOL(ean), are always defined.

DEPT and tNfE are inverse functions: database systems have

sophisticated mechanisms for maintaining inverses. In a Codasyl

system, for example, fDEPT would be implemented through a set,

and TNAME through a hash function. In general we do not expect

all database functions to have efficiently implemented inverses.

. '. '1 wa.l.
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In order to complete the description of FQL, we must

introduce a few more operators and another method of extending

types. The notation [NUM,STRING] denotes the type of tuples of

objects of type NUM and STRING. The same notation applied to

functions denotes a function that yields a tuple. For example,

[NAME, SAL] is a function of type EMPLOYEE -> (STRING, NUM]. The

function [NA1ME, SAL] applied to an EMPLOYEE produces a

[STRING, NUM] tuple.

!EMPLOYEE.* [NAME, DEPT.DNAME];

is a query which produces the names and department names of all

employees. The result of this query is of type *[STRING, STRING].

Another useful operator is restriction, denoted by "j"- If

is a predicate ( a boolean valued functicn) then jp restricts

sequences by that predicate. For example, IMARRIED is of type

*EMPLOYEE -> *EMPLOYEE, and will filter cut, from any sequence of

employees, those that are married.

!EMPLOYEE. IMARRIED.*[NAME, SAL];

is a query whose result is of type *[STRING, NUM] and which

provides the name and salary of married employees.

The ability to define new functions is extremely useful. The

average salary for a department may be defined as a function of

type DEPARTMENT -> NUM as:

AVESAL = tDEPT.*SAL.AVERAGE;

and the average function may be in turn defined as a function of

type *NUM -> NUM as:

AVERAGE = [/+, LEN].DIV;
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where /+ adds up a sequence of numbers (perverting an APL

notation), LEN computes its length and DIV divides two numbers.

This last definiticn illustrates a number of points. In the

first place FQL functions all take one argument and return one

result. The effect of multiple arguments is achieved through the

use of tuples and selectors. The selectors are the functions

fl, 12,... which respectively select the first, second.. members

of a tuple. Second, it is possible to define arbitrary functions

in FQL, and since the basic list processing functions are

available, together with recursion, FQL provides the same

computational power of pure LISP. Third, variables are not needed

in function definition: this turns out to be a considerable

advantage in evaluating FQL expressions as the overhead of

preserving "environments", which is substantial in many lazy

evaluation schemes, is greatly simplified. Fourth, it is possible

to define functions and to evaluate FQL expressions without

reference to any database. For example,

[1, 2].+;

is a valid FQL expression and will be evaluated. It is surprising

how many database query languages fail to provide the power to

evaluate simple arithmetic expressions, even though they can

perform arithmetic when it is embedded in a database query. Note

that in FQL, for uniformity, the numeric constants 1,2... and the

boolean and string constants are treated, as constant functions.

Like the function !EMPLOYEE, their result is independent of their

argument. During the evaluation of a query, the result of

IEMPTOYFE will not change; however, ovvr a longer time scale, we
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may expect the function !EMPLOYEE to be considerably less

"constant" than the number 1.

Further examples of FQL function definitions, including some

that exploit recursion, are to be found in [3, 9]. The appendices

to this paper give a specification of the FQL syntax and a

comprehensive list of built-in functions. A few examples are

given here in order to demonstrate the use of the operators

described above in some simple database queries.

1. The names and department names of all married employees.

!EMPLOYEE. IMARRIED.*[NAME, DEPT.DNAME];

The output o' this query is a sequence of pairs of strings

(type *[STRIIG, STRING]).

2. The name of 2ach department together with the names of all

married employees in that department.

IDEPARTMENT.*(DNAME, tDEPT. IMARRIED.*NAME];

Unlike the previous example, the output from this query is

"hiera:chical", of type *[STRING, *STRING]. Each department

name will be followed by a sequence of employee names. Note

that tDEPT generates a sequence of employees for each

department.

--------------------------------------
1. The notation used in [3, 9] is slightly different. The inverse
of a function, DEPT say, which is denoted here by tDEPT, was
denoted by IDEPT. The "#" sign is used here for a selector,
rather than a numeric constant. Also, in the version of FQL
currently being implemeni-2d, there is no need to declare data
types when defining a query or function.
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3. The names of all married employees who earn less than the

average salary for all employees.

IEMPLOYEE.IMARRIED.I ([SAL,!EMPLOYEE.*SAL.AVERAGE].LT)'*NAME;

Note that the double restriction could be replaced by a single

restriction and a conjunction.

4. The names and salaries of all employees in the sales

department.

IEMPLOYEE. ([DEPT.DNAME, 'SALES'].EQ).*[NAME,SAL];

The output of this is of type *[STRING, NUM].

5. The names and Salaries of all employees in the sales

department.

!DEPARTMENT. (DNAME, 'SALES'] .EQ) .*TDEPT./CONC.*[NAME,SAL];

A possibly more efficient version of the previous query.

Notice that after *kDEPT we have a sequence of sequences of

employees. CONC is a function that concatenates two

sequences; /CONC, the reduction of CONC over a sequence,

"flattens" a sequence of sequences (note the analogy with /+).

The possibility of automatically performing the transformation

from example 3 to this example is briefly discussed later.

6. Does a department have more unmarried than married employees?

MOREMARRIED = tDEPT.[!MARRIED.LEN, I (MARRIED.NOT).LEN].GT;

This is a function of type DEPARTMENT -> BOOL that defines a

predicate on departments. (Recall that LEN computes the

length of a sequence.)

.. . . .- , A, ... . . ililF - , -
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7. The names of such departments

IDEPARTMENT. jMOREMARRIED. *DNAM4E;

Finally, we should introduce one further operator, which

although its use in database queries appears limited, is extremely

important in the internal definition of the interface between FQL

and the database access subroutines. The operator & takes a

function f and creates a sequence-producing function which

generates the sequence obtained by applying successive powers of f

to an argument. For example,

O.&addl;

generates the sequence 0, 1, 2 ... and

[0, 1].&[f.2 +].*#1

generates the Fi.onacci sequence. The second example illustrates

the use of the sAectors #1, #2 to access components of a tuple.

It is a property of the implementation that both sequences are

produced 'indefinitely and will in practice only terminate on

arithmetic overflow or when interrupted by the user.

To recapitulate, a database is viewed as a collection of

functions over various data-types. Five operators, compose (.),

tuple ([...]), extend (*), restrict (1) and generate (&) are

available for combining the database and built-in functions into

new functions and queries. Using the notation *O to denote the

type of a sequence of some type , and [w.,, L,...,OW,] to denote

the type of tuples of c, ,0 4 ,..., ,, we may summarize the types of

functions produced by these operators as follows:

II
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1. Com ose. If f and g are such that f:o ->' and
g:7 -> then f.g: a -> y .

2. Extend. If f: 0 -> (3 then *f operates upon a sequence of
these types; i.e., *f: * ->*( .

3. Restrict. If p is a predicate over a (i.e.,
p: cv ->bool) then pt *o ->* '.

4. Tuple. If f, :cK ->Is,, fa : -> .. f,: O- ->(5 then[f, f , ... f'n] k

5. Generate. If f : K->o( then &f : -

3.0 IMPLEMENTATION STRUCTURES

It should be apparent from the previous section that the main

problem in implementing FQL, or a languaga like it, will be with

the r.,presentation of sequenccs. Fcr reasons of space, sequences

cannot, in general, be manifested as in-core lists or arrays; and

their representa:ion as files in secondary storage is needlessly

time consuming.

The solution to this problem is to represent sequences as

coroutines that provide their successive members as these are

required by some calling program. The technique was originally

suggested by Landin [16] and several programming systems (5, 101

have exploited the technique in various ways. We shall use the

term stream for this representation of a sequence: Burge 14]

gives an excellent description of how the iterative control

structures of conventional programming languages can be

represented as operators on streams.

......... .............. r %-*.
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We shall represent a stream as a two component data structure

whose first component is the first member of the stream, and whose

second component is a suspension. Informally, a suspension is a

"promise" to create another stream. It consists of a function f

and an argument a: the application of f to a creates another

stream, the "tail" of the original stream. A procedure such as

PRINT, which has to traverse a stream, must do so by repeatedly

evaluating suspensions.

Suspensions have been introduced for the purpose of

representing streams, but they can also be used in other places to

cut down unnecessary evaluation. An example is the familiar

"if p and q then.." in which the evaluation of ! is only required

if the evaluatioL of p yields TRUE. In this case, p and _ may be

represented by suspensions which are evaluated, if needed, by and.

Since we are dealing with a side--effect free system, the usual

arguments for (o: against) requiring that 2 be evaluated do not

apply. The technique of delaying the eveluation of expressions

until their values are needed is known as "lazy" evaluation: it

is particularly relevant to database queries because the

alternative of "prompt" evaluation may call for unnecessary and

time-consuming accesses of secondary storage. We shall therefore

use it not only for the representation of streams but also for the

basis of evaluation of any FQL expression.

iX4



Page 17

3.1 The Internal Representation Of FQL Expressions.

It will be convenient to use a uniform physical structure

both for the representation of an FQL expression and for the

intermediate data structures created during the evaluation of such

an expression. We use the notation {x1 ,x2 ,..x for a structure

containing the finite sequence of objects x, x ' The

structure may be implemented as a linked list or an array,

depending on what is most expedient in the chosen programming

environment. Operators must be available for selecting the ith

component of such a structure and for constructing it from its

components. It will also be convenient t. describe the role of a

structure in the evaluation process by an initial letter between

the braces; for example a suspension con3isting of the function f

and the argument a will be denoted by {U f, al. There will in

fact be four types of structure used in the evaluation process;

their roles should become apparent as the evaluation technique is

developed, but wq shall briefly introduce them here:

fU f, al denotes a suspension (U for Unevaluated). The

components of a suspension are a function f, and an

argument a.

{F f,, f "'*' denotes a functional form. This is a compound

structure representing a function. In general, the first

component, L,, of a functional form will denote an

operator and the remaining conponents will represent

functions or functional forms.

-.---
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IT x,, , Xhj denotes a tuple. A tuple is a structure that

cannot itself be further evaluated, and may serve as an

argument in a suspension. The components of a tuple may

themselves be suspensions, and are subject to further

evaluation. Note that we have used the word "tuple"

ambiguously to refer to a data type, an operator and to an

internal data structure.

{S x, ul denotes a stream. This is a special two-component

tuple whose second member is always a suspension. This is

used for the representation of very long (or "infinite")

sequences, typically those in the database.

Not all these distinctions are required; however a field or

variant type statement describing the role of a structure will be

found invalua.Ae for debugging purposes.

The result of evaluating an expression must be a printable

object. The printable objects are, by definition, the printable

atoms, such as character strings and nuwioers; and streams and

tuples of printable objects. For example, printing selected

fields from all the records in a given class will call for the

creation of a stream of tuples of printable atoms.

An FQL expression is internally represented as a function or

functional form. If F is a (built-in or user-defined) FOL

function symbol, we shall use f to denote its internal

representation and, more generally, e will denote the internal

kc J
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representation of an FOL expression E. The rules for the

translation of FQL into an internal representation are quite

simply:

F -> f for any user-defined or built-in
- - function symbol F (this includes

numbers and string constants.)

I-> F compose, e,, ej

[E,,E 1 ,..E,] -> {F tuple, t,,

Ii -> {F select, i)

*E -> {F extend, el

E-> {F restrict, el

&E-> {F aenerate, el

where cormose, tup.e, select etc. are internal references to

functions whose implementation we shall shortly describe. As an

example of the translation,

11,21.+

is represented as

IF compose, {F tup.e, 1, 21, plus)

What has been done here may simply be regarded as a syntactic

transformation of the expression. It also represents a minimal

form of "compilation" in which symbols are replaced by internal

pointers, and expressions by data structures. As we shall

indicate later, compilation involves somewhat more than this.
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3.2 Evaluation Of An Expression

This structure produced by compilation still represents a

function; and in order to create an object that may be evaluated,

we first embed it in a suspension, giving it a dummy argument 1:

hU IF compose, {F tuple, 1, 2}, plus}, s}

In this suspension, the value of the argument will be irrelevant

because the function is constant, i.e it ignores its argument.

Now the process of evaluating a suspension may be performed

through a very simple reduction rule, which we shall call evalstep

evalstep({U f,a}) =

f if f is atomic

ay:ply(f,a) if f is built-in

{11 def(f),a) if f is user-defined

,e IT a if {F = IF e,

The effect of eval-step can be understood in terms of the data

structure used to represent an FQL function f. The four lines of

evalstep deal with four possible function types:

Atomic (line 1). Atomic functions include numbers, quoted

strings and the boolean values true and false. Treating

these as functions is merely a syntactic convenience.

It would be quite possible to add an explicit a

operator in the source language (FQL) and treat them as

objects rather than functions.

! - W;7
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Built-in (line 2). This includes both the functions (Plus,

and etc.) and the operators (compose, restrict. etc.).

A built-in function has some reference or index that is

understood by :a!.

User-defined (line 3). Internally, a user-defined function

has a name, which may be used for debugging or for

printing out definitions of other functions; and a def,

which is the definition of this function. This indirect

reference is essential in interpreted systems in order

to allow for the dynamic definition and redefinition of

functions by the user.

Functional "orm (line 4). Consider a simple suspension such

as ju {F extend, fl, sj, where f is some function that

may be applied to elements of the stream s. extend is,

like MAPCAR in LISP, an operator, which takes as

arguments a function and a stream and applies the

function to each member of the stream. The form

{F extend, f} represents a function in which extend has

been given one of its arguments. It is a "partial

application" [5] or "Curried" function [4]. When this

form is in turn applied to a stream, we transform the

suspension {U IF extend, f}, s into the suspension

(0 extend, {T f, sI in which the function f and the

stream s are combined into an explicit argument for

extend. The final line of the definition of evalstep
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describes a generalization of this transformation that

will also cope with forms such as {F compose, e,, ej1 .

The function evalstep performs a single reduction step and

may not completely evaluate a form; it could return another

suspension. However, it is usually called in situations where it

is required to return an explicit result. We therefore use

evalstep to construct a function eval that will evaluate until

something other than a suspension is returned.

eval(u) =

U if u is not a suspension

eval(evalstep(u)) otheraise

In practice, eva'. would be implemented as an iterative program.

We now turn to the the operators and some of the built-in

functions. For each such function or operator f, we must define

the result of apr ly(f,x):

apply(compose, {T a, f, g}) =

{u {, uf

Composition is in reverse polish order.

m'
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l a_ (tuple, IT x, f ,, 2,...}) =

IT {U f ,,xj, {u f2,xl...1

Note that the members of a tuple are not evaluated by

tup e.

apply(select, {T x, i}) =

iselect (eval (x) , i)

where iselect is the internal function that finds the

ith element of a tuple. The argument x must be

evaluated in order to obtain a tuple, but the selected

element itself is not evaluated.

Before looking at the other (stream processing) operators,

let us examine the evaluation of our simple FQL query: 11,2] .+

As described above, this is translated into the suspension:

{U {F compose, {F tuple, 1, 21, plus, 01

This is given to eval which, after one application of evalstep

creates the suspension:

{u compose,{T 16, IF tuple, 1, 21, plush}

The next application of eval-step will pp y the operator compose

to give the suspension:

(U plus,{U IF tuple, 1, 2), 011

At this point apply(plus,s) is called. Now the internal function

for plus, call it iplus, is a two-argument function which will

require both of its argumcnts evaluated, this can be done by

a22l_:
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appl.(plus, u) =

iplus (eval(iselect(l, x)),

eval(iselect(2, x)))

where x = eval(u)

In our example, u is

{0 {F tup_l!, 1, 21 , j
which evaluates to:

{U tuple, {T j6, 1, 211

which in turn evaluates to:

{T {U 1, 0}, {U 2, }}

by the definition of tuple. The evaluation of the components of

this tuple respectively yield 1 and 2; iplus now has both its

arguments, and yields 3, which completes the example. At first

sight this appears to be a somewhat laborious method of adding two

numbers, but thil is largely an illusion resulting from the

syntactic represe!ntation of data structures. The physical

reduction of the original expression has involved a only a small

number of list or array operations that do not involve a great

deal of processing. However, the main point is that the

efficiency and power achieved in a database environment, where the

importance of reducing i/o usually dominates othe- considerations,

is greatly enhanced.

3.3 Stream Processing Operators

At the beginning of this section, we mentioned that a stream

is a two-component structure denoted by {S x, u) whose second

- - - ~ . - - -- ----- _ _ _ _ _ _ _ _ _ _ _ _ _ 3
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component u is a suspension. The first component x, which may or

may not be a suspension is termed the head of the stream. The

result of evaluating u must be another stream, which is called its

tail. The stream operators may now be defined:

a2l (extend, fT s, fl) =

{S {U f,x}, (U extend, {T u, f}i)

where {S x, ul = eval(s)

In other words, the argument for extend must first be

evaluated until it is a stream; a new stream is then

created whose head is a suspension. There is a good

reason for leaving the head unevaluated: the function f

may carl for a database access, and this may be

unnecesary. For example, one night only want to

retrieie the third record in a sequence, given a stream

of indices for those records, in which case retrieving

the first two records would be pointless.

apply(enerate,{T x, fl) -

is x, (u enerate, {T (U f, x}, )}1)

Although the expansion of a stream produced by generate

appears to give rise to deeply nested suspension, this

does not, in practice, happen, for reasons that we shall

give shortly.

I,
. . . ... 4. .. .[ -'" -'
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apply(restrict,{T s, P}) =

{s x, {u restrict, {T U, 1}} if eval({U p, j)) is true

{U restrict, IT u, p]} if eval({U 2, xI) is

false

where {S x, ul = eval(s)

None of these stream processing operators has any provision for

the termination of streams. There is a special atom end that is

recognized by the operators extend and restrict. For example,

extend will always map end into end, irrespective of the function

f that it is extending. Under certain circumstances, the operator

generate (or a wriant of it) will produce end; this is useful in

building the database interface. Note that the normal list

terminator NIL is therefore equivalent to the FQL expression &end.

In most database queries, stream termination is controlled by the

underlying streams defined by the database. It is a simple matter

to extend FQL with operators that correspond to the iteration

control statements, such as while..do.. or repeat..until.. of

conventional programming languages. See Burge 14] for details.

In order to complete our discussion of evaluation, we should

explain how the result of a query, or any expression, is printed

out. It is in fact the function print that drives the whole

evaluation, print is initially given a suspension and must call

for its complete evaluation.

print(s) =

iprint(x) if x is atomic

• , .;A.
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for i = 1 to n do print(x.) if x = IT x ,x_..xI
-L

sprint(x) if x is a stream

where x = eval(s)

We have assumed an internal function iprint that can deal with the

atomic types: STRING, NUM and BOOL. sprint is another iterative

procedure that traverses a stream (using tail) and recursively

calls print on the successive heads until the end-of-stream marker

end is encountered.

3.4 The Database Interface

In this section, we shall describe some of the details of an

interface to a C.dasyl system. Although this does not

automatically generalize to all database management systems, most

of the systems that the authors have examined (including the

relational systems) have, at some internal level, subroutines or

control blocks that support record-at-a-time access to the

physical database. In our initial implementation of the language

we were particularly fortunate to have at our disposal a Codasyl

system, SEED 1Il], that provides, together with the DBTG (6)

standard data manipulation routines, a set of subroutines that

answer questions about the database schema. This makes the

process of checking a query extremely simple: in other systems

one might have to resort to reading a (parsed or unparsed) version

of the Data Definition Language.

1* ~ ~ ~ ~r
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To our set of primitive types, NUM, STRING and BOOL, we shall

add two new internal types, DBID (Database Identifier) and CP

(Currency Pointer). A DBID is any name associated with the

schema: for a Codasyl system, a DBID may be the name of a record,

item or set. A CP is a physical record address. According to the

DBTG specifications, there is a group of FIND subroutines that

operate on a global set of currency pointers. Our first task is

to confer some "functionality" on these subroutines. Consider the

problem of representing a set traversal. One would normally

establish a currency pointer to the owner record and then do a

"find-first-in-set" to obtain the first member record. A

"find-next-in-set" procedure is then repeatedly invoked to obtain

currency pointer to successive member records of the set. An

error flag is se., when the set is exhaustad. These two FINDs may

be represented b, two functions. findfs (find-first-in-set) is of

type [CP, DBID]->CP. Given a CP for an owner record and a DBID

for the set, it produces a currency pointer for the first member

record of the set or end if the set is empty. findns

(find-next-in-set) is also of type [CP, DBID]->CP. It is given a

CP to a member record and the DBID for the set, and returns the CP

for the next member of the set, or end if the set is empty. With

these definitions, it is a simple matter write a function genset

The FIND commands may all be variants of one subroutine. Date [7]
and Ullman [25] present concise descriptions of these.

~ ~7.
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in FOL, of type [CP, DBID]->*CP, that generates the stream of all

currency pointers to records owned by the given record in the

given set. genset is:

[findfs, #2].&[findns, #21.*#1

The selector #2 in the second position of the second tuple

preserves the DBID, a set identifier, for successive applications

of findns.

To be more precise about how FQL code is interpreted, we

first add to our translation table of Section 3.1, the rules:

I -> IF zinverts, D) if D is a set DBID

-> {F seto, D) if D is a set DBID

-> IF item, D) if D is an item DBID

1D -> {F invertk, D] if D is a CALC key DBID

ID -> IF instances, D) if D is a record DBID

Type checking should be done to ascertain that the operators have

been used correctly. We may now exploit the function genset,

defined above, in the application of inverts:

appy(inverts, {T c, dl) -

(U 2ensets, {T c, d1

where c is a CP and d is a DBID. The code for gensets can also be

represented, somewhat more efficiently, as an internal function.

2221 (inverts, IT c, d)

'U
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ju generate, IT {U findfs, {T c, dl},

IF findns, dill

However, it should be noted that once the data access routines

have been expressed applicatively, the database interface can, to

a great extent, be written in FQL.

Traversing a record class (instances) is done by

apply(instances,{T x, dl) =

{U generate, {T {U findfc, f},

IF findnc, dl1

Where findfc, of type DBID->CP, finds CP for the first record in a

class and findnc, of type [CP, DBID]->CP, finds CPs for successive

members of that class. Since {F instances, D) is a constant

function, the argument, x, is ignored. Doing a CALC key access to

a sequence of records with the same key may be done in a very

similar fashion. The remaining functions, seto (for set

ownership) and item (for access to items in a record) correspond

directly to the database subroutines.

At this point it may be illuminating to trace through some

key points in the evaluation of the query of Section 1.0,

retrieve NAME from EMPLOYEE where AGE < 30 and

SALARY > average(retrieve SALARY from EMPLOYEE)

...........
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This is expressed in FQL by the expression

!EMPLOYEE.I ([[AGE, 30] .LT, [SAL, AVESAL].GT ] .AND) .*NAME;

i.e. IEMPLOYEE generates the stream of all employees, I(..)

restricts this to the stream of just those employees that satisfy

the predicate (call it P) within (..), and *NAME converts this to

the stream of names of these employees, which is to be printed.

As in Section 2, AGE and SAL are functions that, when applied to

an employee, return that employee's age and salary respectively,

and AVESAL is another FQL expression that finds the average salary

of all employees.

The top-level "PRINT" drives the evaluation of this

expression by embedding its internal form in a suspension with a

dummy argument, ind calling eval, expecting a number,string,

boolean, tuple of stream:

{U {F compose, {F compose, PE , eiI,

IF extend, name), 0)

where eEMP is IF instances, EMPLOYEE), the internal form of

IEMPLOYEE, and e is the internal form of IP. After a few

evaisteps, this is transformed into

fU extend, (T ej, name)

where e is {U (F compose, e,,, e , 01. evalstep then 2pplys

extend, which evaluates eV, expecting a stream. After a few

evalsteps, el becomes

fu restrict, {T e., eH}}

where e. Iis fU eEFP , 0), which is

fU IF instances, EMPLOYEE), 0), and ep is the internal form of

the predicate P. restrict, vi4 appl, caluatc. oto get a



Page 32

stream is xV , tEM P },the head of which is the first employee x ,

and the tail of which is a suspension tp that represents the

stream of remaining employees, restrict now embeds x. in a

suspension with e., the predicate P, and evaluates it, expecting a

boolean value indicating whether the employee satisfies P; i.e.

it evaluates

ju IF compose, {F tuple, eA6E , -5AL 1' and), 2S

where e and e are the internal forms of rAGE,30].LT and
ME-SAL

[SAL, AVESAL].GT respectively. After further evalsteps, this

becomes

{U and, {U IF tuple, eAGE eAL ', 2_i]}

and evaluates its argument to first get a tuple

1T IU e, , x [}, {U eC, }

and then evaluates the first component of the tuple, (U eAE ,xI

to get a boolean result. Suppose this is true (i.e. the age of

employee x L is less than 30). and then evaluates the second

component U eSAL ,2 ). Suppose this too returns true (note that

this is the first time that the average salary is evaluated) and

thus returns true to restrict.

restrict now has the first element of the stream; it

constructs the stream is x I , tj), and returns it to extend, where

t. is {u restrict, {T t E P , e.)), in which t V is the tail of the

stream of employees and e is the predicate P.

Having got a stream, extend returns a new stream to PRINT,

is (LI name, x .},(u nytcnd, {T t., 2YaiE)11

:7
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PRINT now has a stream. It evaluates the head (U name, xl }

and prints it out- the name of the first employee satisfying the

predicate. It then turns its attention to the tail, a stream

which is still a "promise" to extend name to a stream, which is

still a "promise" to restrict, with predicate P, another stream,

which in turn is still a "promise" to get the stream of remaining

employees. The evaluation of this tail aplys extend, which

evaluates tj, which applys restrict, which evaluates t, which

returns a stream with the second employee x as its head,...and so

on.

Again, we should point out that although the trace of

evaluation of this query appears quite conplicated, this results

from our syntactic representation of data structures with shared

sub-structures: the physical processing tostly involves

relatively simple list processing operations. In our current

implcmenLation, less CPU time is spent is spent on the compilation

and interpretation of a query such as this, than is spent in the

database access routines. In any case, the perceived delays

almost always are a result of i/o waits.
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4.0 IMPLEMENTATION DETAILS

In the previous section we gave an abstract description of

the code for a FQL interpreter. If this were to be taken

literally and transcribed into some programming language, the

resulting code would be extremely inefficient and space consuming.

For example, a programmer will discover that there are a number of

places where, for the sake of simplicity, we have needlessly

constructed suspensions. In this !:cction we shall describe a

number of important implementation details that lead to a dramatic

improvement in efficiency of interpretation without compromising

the benefits of lazy evaluation.

4.1 Avoiding Repeated Evaluation

In our abstract description of the interpreter we used a

purely applicative formalism, in which the entire control

structure was defined through function calls. Taken literally,

i.e. if the "result" returned by evcl is always a physically "new"

structure, this would require the repcated evaluation of the same

expression. Consider a simple quecy:

13,4]. [+,#2)

If the evaluation of this is traced, thera are points at which

evaluation of the two suspensions:

{U plus, {u fF tul,3, 41,0)

and

(U select, {T (LI IF tuple, 3, .11, 31, 211

is called for. The (pb,,,-.ical1 ,) c,- -ion oillI-, xr'rP 5 CTb

- .- -_- I i I lrg
-
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{U {F tuple, 3, 41, 01 would be evaluated twice. The situation

is very much worse in the case of queries such as the Fibonacci

sequence (Section 2), where producing the nth element will require

order n calls to evalstep.

However, if we realize that eval performs a reduction, from

one expression to another, "simpler" expression that is always

mathematically equivalent to the first, we can make eval replace

the suspension it is evaluating with its value. The code for eval

therefore has the "benign side-effect" [101 of modifying its

argument; when this expression is accessed from other surrounding

expressions, it will be found to be evaluated already. To

illustrate this technique, consider a PASCAL implementation of the

FQL interpreter. It is convenient to describe all the internal

data types of the interpreter as variants of one major type,

OBJECT:

type OBJECT = tOBCELL;

OBCELL = record
case OBTYPE = (INDIRECTION,

ATOM,TUPLE,STREAM
SUSPEISION ... ) of

INDIRECTION: (CONTENTS: OBJECT)
ATOM :
TUPLE :
STREAM :
SUSPENSION :

end;

The definition of eval in section 3 suggests a function whose

header is:

function EVAL(O: object): object;
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Instead, we use the code:

procedure EVAL(var 0: object);
var RES: object;
begin

while OtOBTYPE = SUSPENSION do
begin
RES := EVALSTEP(O)
OA.OBTYPE := INDIRECTION;
OT.CONTENTS := RES;
O := RES

end
end;

The "var" in the parameter description of EVAL indicates a

call by reference. The pointer 0 is thus physically reset to

point to the result, and the original object that 0 pointed to is

changed to an indirection object. Subsequent calls (if any) to

EVAL with the saiae original object as argument will immediately

find a pointer to the evaluated result. rhe effect of this form

of EVAL i s also to replace any component af a tuple that contains

a suspension wit'i the value of that suspension. As a result, the

interpretation of expressions involving & (such as the FQL

expression for the Fibonacci sequence) do not create increasingly

nested suspensions, but involve a constant number of evaluation

steps for each application of generate. Turner 124], in

describing a graph reduction technique for the interpretation of

applicative languages through the use of combinators, reports a

similar need for an indirect reference.

There is an important exception to this rule of replacing

suspensions with their values. If a stream is evaluated in this

fashion, then each time the second component u of a stream

{s x, u is evaluated, the su!pension u will be replaced by a
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pointer to another stream element. Thus, as the stream is

traversed, it is "solidified" into a linked list. Although this

is acceptable in some programming environments, it cannot happen

in a database application because the representation of a database

sequence as an in-core .ist will be physically impossible. The

solution to this problem is to ensure that all functions and

operators use the special function tail as the only method of

traversing a stream, tail copies the object corresponding to the

second component of the stream before calling eval, thus shielding

the original object from the "benign" side-effect, leaving it

intact.

4.2 Garbage Collection

The implemcntation we have described clearly calls for the

dynamic creation of new structures such as streams, tuples and

suspensions; and while programming languages such as PASCAL and

PL/l provide automatic allocation methods, they do not

automatically detect that a structure is no longer referenced, and

that the storage it occupies may be de-allocated. It is up to the

programmer to decide at what point in the program a structure is

no longer referenced and to issue an explicit instruction (FRE&E or

DISPOSE) to return the storage occupied by the structure to the

run-time system. It is theoretically impossible in this

evaluation scheme to predict when a structure is no longer

referenced. Some form of dynamic garbage: collection mechanism is

required. Fortunately all structures created by this evaluation

' -
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technique are acyclic: they do not contain circular chains of

pointers. A simple reference-count garbage collection

scheme 19] may therefore be employed. Each structure contains a

reference-count field that counts the number of other structures

that directly refer to it. Should this count fall to 0, the space

occupied by the structure may be returned to free storage, and the

reference counts of all structures referenced from this structure

may be recursively reduced. The advantage of this scheme is that

it works synchronously: garbage collection does not, in general,

cause large-scale disruptions in program execution.

As a matter of practical importance to PASCAL programmers:

the DISPOSE command is often left unimplemented. It is therefore

necessary to keep one or more free lists of unused structures. It

considcrably simplifies the code, and the efficiency of storage

allocation, if all such structures are instances of just one data

type. Variants of this type are used to implement the different

kinds of structure required by this evaluation scheme.

4.3 Compilation

The only form of compilation described so far is the simple

translation of on FQL expression into an internal list structure.

There are several reasons for adding some further translation

checks at compile time. In the first place, some database

3. A recursive function de:finition does contain a circular chain,
but this is broken by an indirect reference through the symbol
table.
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management systems do not allow character strings to be used as

DBIDs. The character strings known to the user must be translated

into internal references before a query may be run. The

translation tables may not be kept in the -ame physical file as

the database, and may not be structured in a way that allows a

character string DBID to be repeatedly translated into its

internal form with any degree of efficiency. It is therefore

advisable to scan all the functions involved in a qtery at compile

time and substitute the "internal" DBIDs for the external database

names.

A second and important improvement to efficiency may be

achieved by the compile-time detection of "constant-valued"

suh-expressions This formalism treats the form {U f, a)

uniformly as a unction f applied to an argument a. When evalsteo

finds f to be atomic (BOOL, STRING,NUM), it is treated as a

"function that ignores its argument a", and f is directly

returned. Ideally we would like the same thing to happen even

when f is a complicated expression that is constant-valued; we

would like a to be ignored and the value of f to be returned

directly. However, the final reduction rule in evalste2, i.e.

eva~ste2({U f, a]) =

{U e1 , {T a, e2,..,ej}1 if f = IF ,

always splits f into a new structure surrounding a even if f is

constant-valued and ultimately ignores a. When evaluation reaches

snoe other part of the qiory that points to this same f, this

U-.--
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process will be repeated.

Consider the following part of a query that finds all

employees with salary less than the average salary:

IEMPLOYEE. ([SAL,AVESAL].LT)

where AVESAL is an expensive FQL function that returns a constant

value over the duration of query evaluation. As part of the

overall evaluation, the form JU def(AVESAL), xl is to be evaluated

over each employee x generated by !EMPLOYEE. Because of the

restructuring of this form by the reduction rule in evalste , the

form is re-evaluated, at great expense, each time it is

encountered.

if, however, we knew that the expressioii f in {U f, a),

though complicated, was constant-valued, we could avoid the

restructuring, evaluate f by itself, and replace f by its value.

All forms {U f, bI, {U f, c), etc. in other parts of the query

that refer to the same f thus simultaneously benefit from this

evaluation, and, in fact, f will be evaluated only once.

It is possible to detect and "tag" constant-valued

sub-expressions at compile-time with very little overhead, by

modifying the translation rules. For example,
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boolean, string, numeric constants F are translated into

4K f}

{F ompose, e is translated into

IK e2

{F compose, IK e 1},e£} is translated into

4K {JU e {K e.1ll

where IK el indicates that the sub-expression e is

constant-valued. In this way, the "K" tags "bubble" up to the top

of maximal constant sub-expressions; in fact, a complete query is

always a constant expression. eval and evalstep can now be

modified slightly to take advantage of these "K" tags. In

particular, eva'0 ([K e )) just replaces e by eval(e), and

evalstep({U K t1.}, a]) returns {K el irrespective of the form of

e. Thus constant-valued subexpressions are never evaluated

repeatedly, and we obtain the desired improvement in efficiency.

Detecting constant sub-expressions is a special case of type

checking. In the first implementation of FQL, the user was

required to specify the range and domain types for each of his

defined functions. The compiler would then check that each

definition was well-typed before executing the query. There are

certain advantages to allowing some type checking to be delayed

until run-time. For example, it is possible, in some database

management systems, to traverse a collection of mixed record

types. In the current development of FOL, we hope to achieve the

benefits or both compile- and run-time type chccks. This in
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briefly discussed in the final section.

5.0 EXTENSIONS

There are several directions in which the techniques we have

described could be extended. The developments of immediate

practical importance for database interfaces include (1) A more

"user oriented" query language: it should be possible to

construct a translator for a language that syntactically resembles

SEQUEL into the control structures we have described. (2)

Interfaces to other database management systems. For the most

part, DB%1Ss at some level provide the kinds of sequence traversing

control that is used in Codasyl; but thre are important

exceptions. An ADA13AS query may return a bit vector that

describes the lccations of records in a sequential file that have

a given property. To include such struc:ures in FQL presents no

fundamental problem, since all the FQL operators have a meaning

when used with vectors. The only question is whether to make

vectors visible to the user as a separate data type, or to make

the choice of physical representation an internal decision for the

interpreter. (3) Updates. While FQL% was designed to overcome

problems with database query languages, it would be an advantage

if it could also handle updates within the same general framework.

Of these three developments, we see only the update problem

as requiring new control structures. In this section we shall

briefly discuss the update problem and so'De further optimization

tccfniqjzs.
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5.1 Updates

From a purely applicative viewpoint, the purpose of an update

is to create a new database without destroying the original.

While some systems have been proposed, especially in the area of

office automation, that never "forget" data [15] , this is an

unrealistic proposition for most practical database applications.

A simple-minded approach to updating in the functional model is to

regard an update as a redefinition of some extensionally defined

database function in terms of some (intentional) function

definition. Thus to update the SAL(ary) function, one must

provide a new definition of it: for exariple, SAL := [SAL,1.05].x

would give everyone a 5% raise. To add new members to a class

such as EMPLOYEI:, one must provide the values of all database

functions on thcse employees (a stream of tuples) , and invoke a

suitable updatirg primitive for !EMPLOYEE.

Such updates are similar in form to defining new functions,

and should only be allowed as top level commands in any system.

Thus, an update may not occur as a sub-expression of some FQL

expression. Moreover, there should be no need for this. The

update primitives suggested are all bulk updates. The intentional

component of an update may be an arbitrarily complex expression,

and may involve external files or datahares.

While such update primitives are adequatc for a pre-defined

database, such as an existing Codasyl system, they will be

inadequate for the user who wishes to extend the schema of the

database dynamically. We see it as being hiqjhly desira.mle for tl.v

S,,-* .
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user to add incrementally new types and new database functions.

This appears to be essential for "personal" databases and for the

"federated" DBMS proposals discussed by McLeod [181. However,

while we believe that a very simple functional model, such as the

one we have described, is adequate for defining database queries

(especially whun these involve heterogeneous systems), a

semantically richer model is desirable for update specification.

We are currently developing [26] a simple DBMS that may be used in

conjunction with an FQL processor, and which will support some

recently proposed [12,23] semantic extensions.

5.2 Interfaces For Other Programming Languages

A common problem arises from the need to embed a database

access mechaniso. in some programming language. Although this

should become less important as query languages become more

powerful, in a practical operating environment, query languages

fail to provide all the tools that are provided by a

general-purpose programming language. There are in fact two

problems, one is how to embed the query language in the

programming language itself; the other is how to return data to

the calling program.

The simple solution to the first problom is to embed database

queries as character strings, and to call some subroutine that

interprets the character string as a query. A less trivial

approach is to merge the two languages either by means of a

jprepro-..,)r, o- by modifying the compiler for the prof1rrimming

".4~.* .j-
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language. Although an applicative language such as FQL and

varieties of the relational calculus can be expressed as a set of

functions in a "von Neumann" language such as Pascal, PL/1 or ADA,

a programmer in such a system might be somewhat confused at the

two styles of programming. Embedding FQL in a language such as

LISP, which is based upon an applicative formalism, is much more

natural. It may have been noted that our symbolic notation for

the internal representation of an FQL expression (section 3.1)

corresponds directly to the syntax of a LISP S-expression, and

that this is an alternative surface syntax for FQL.

The second problem, that of returning data to the calling

program, is cleanly solved by these implementation structures.

The class of structures that can be retu::ned to the calling

program is precisely the class of printa)le structures. That is,

the atomic types such as STRING, NUM and BOOL; and, recursively,

any combination of stream or tuple of these. In order to traverse

such a structure, the calling program requires only the functions

head, tail, select and the predicate null to check whether a

stream is empty. The result of applying these predicates is to

produce either an atom or something of type tuple or stream.

Through these functions, the calling program may perform multiple

traversals of the output structure.

-- -- --- - -

- - ~ - ,- - - ,-- j.
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5.3 Query Optimization

FQL, although it is concise, is still a low-level language in

the sense that the evaluation of a function or query is directly

determined by its definition. In a higher level programming

system a query may be transformed into a more efficient

representation. For example, the query that prints the names of

those emnployees who earn less than the average salary for their

department is simply expressed in FQL as:

!EMPLOYEE.I ({SAL,DEPT.AVESAL].LT).*NAIE;

where AVESAL is of type DEPARTMENT->NUIM and has been defined to

compute the average salary of the employees in a given department.

Unfortunately, none of the techniques so far described will

prevent AVESAL from being recomputed for each employee. There are 1'
two solutions to this problem. One is to store values of AVESAL

as they are computed, thereby turning AVESAL into an extensionally

defined function (this is sometimes called "memoizing"). The

other is to observe that the query can b? made much more efficiert

if it is based upon a traversal of the DEPARTMENT class, rather

than the EMPLOYEE class. In order to do this, the query must be

subjected to a set of syntactic transformnations. For example,

!EMPLOYEE -- > IDEPARTMZNT.*tDEPT./CONC

where /CONC concatenates a stream of streams, is an allowable

transformation. Combined with other transformations, it can be

used to generate the efficient version of the query for, say, a

Codasyl database. We have not yet attempted to augment our

existing implementations with such optimizing techniques, nor are

we sure that the optimization shou1ld be done by the JQL prce5.;or

o.,
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itself as opposed to some higher-level systV m that g-nerate s

FQL-like queries. The point to be made here is that a functional

expression of a database query reduces the problem of optimization

to one of syntactic manipulation of expressions, much as has been

suggested for the relational calculus [251.

5.4 The Use Of Data Types

In our initial implementation of FQL, each query and function

has a type, and these wore provided by the user for each

user-defined fun~ction. A "compiler", as well as generating the

internal form of an FQL exprcF &ion, also cliecks thiat a query and

all functions rt'quired by that query, ar well typed. It aiso

converts databa.-;e identifiers (the DI3IDs montioned in Section 4)

into their into: nal form. This is too r~istrictive, especially

since a number of apparently well-formed expressions cannot be

typed in advance. For example, the funczion that takes the secornd

element of a stream, TL.11D, cannot be completely typed because we

do not know the underlying type of the stream. Thu,,. a separate

function must be defined for each type of stream, *NUM, *STRING

*EMPLOYEE, etc. This problem has been re.;,,d-icd by the

introduction of "wild-card" typos: the type of TL.HD is givcn as

*?A -> ?A, where ?A is a wild-card type, but there remain other

problems.

We are now experimonting with a syot..i in which much of the

type checking is dulayed until run-time. There are a numbor of

rea...ons for d~oing this. Pir;t thcr% re c1tab-- iti which
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streams may contain mixed typr-s (this is actually allowed by the

Codasyl standard). Second, in the semantically richer DBMSs

mentioned earlier, it is useful to have predicates which determine

a type, and functions which coerce one type into another. Third,

since rOL is already in use as an interface for a number of

Natural Language systems, it may be appropriate to embed it in

LISP or sowhe other "untyped" language that is suitable for such

applications. Fourth, it may be useful to have at an internal

level, alternative representations of types: for example a stream

could be represented as we have suggested in this paper; it could

also be represerted as an array. In an untyped system, it would

be possible to write the bulk of the routines for manipulating and

coorcing Fuch types in FQL itself.

In the lonci term, however, we believe that the correct

solution is to have a richer calculus for data types, and to

employ a mixturc of compile-time and run-time checking. Using

techniques similar to those proposed in [191, it is possible to

assign a type autolnatically to many expressions. Moreover, to

have type information available at run-time may simplify parts of

the interpreter. For example, in the i-nplementition we have

describ2d, each built-in function is responsible for deciding

whether to evaluate its arguments. Ho,_over, this job could be

given to eval (as it is in conventional languages), if it could be

determined, at run-time, that say plu;: requires a tuple of

numbers, while and requires a tuple of objects that are either

b.-e1 ans or zus)en.; ]ns that will getvi.ite bool:on.. In general,

th,,,re ofr .. :n 2fl p'r ble-v i ' j 'rfi r:i,,flCy .'-,l dr,ujq ing

f.
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for laZy evaluators. While these have not caused a problem in the

relatively simple functions and queries that are usually built up

in a database environment, it may be that a more sophisticated

treatment of data types will lead to a more efficient mixture of

prompt and lazy evaluation in general programming environments.
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Appendix A

FQL Syntax

The following BNF gives the syntax for a function
definition (<def>), a data-type (<type>), a functional
expression (<fexpr>), and a function (<function>) itself.
Optional conporients are denoted by "{ ... 11)1 while{"
signifies a set of elements may occur an arbitrary number of
times.

<def> ::= <name>{:I<type>3-><type>}=<fexpr>;

<type> NUM
::= STRING
::= BOOL

*<type>
[<type>{,<type>}

<fexpr> <function>{.<function>1*

<function, , <nnmein
:=*<function>

I<function>
: &<function>

: *-[<fexpr>{,<fexpr>} ]
: *- (<fexpr>)
::= !<name>
:= ^<name>

I
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Appendix B

Standard Functions

The standard functions supported by FQL are grouped here by their

type.

Arithmetic functions

The functions +, -, x, /, and MOD all map frcn [NUM,!UM] into
NUM. The functions /+ and /x perform addition- and
times-reduction on streams of NUMs; i.e., they map *NUb4 into
NUM. Given an empty stream these functions return their
respective identities, 0 and 1.

Relational and Boolean Functions

The operators EQ, NE, GT, LT, GE, and LE map from either
[NUM,NUM] or from [STRING,STRING] into BOOL. The functions AND
and OR map [BOOL,BCOL] into BOOL; the complement NOT maps BOOL
into BOOL. The two reduction operators, /OR and /AND, represent
mappings frca *DDOL into BOOL and, given empty streams, return
the values "true" and "false" respectively.

Constant Functions

Any numeric ccnstant represents a mapping ->NUM whose value is
this constant. Any character string similarly denotes the
mapping ->STRING. !<name>, where <name> identifies a database
class, is a function that generates all members of that class.
The function NIL is a constant signifying the empty stream of
any type; i.e., ->*c.

Basic Stream-manipulating Functions

Given a non-empty stream, the operation HD returns its first
element (*o->0 ) while the operation TL returns a stream of the
remaining elements (*o .- >*K). The function CONS takes an
element of some type and a (possibly empty) stream whose
elements are of that sa:ie type and returns a new stream in which
the individual element is its "head" while the original stream
becomes its "tail"; i.e., CONS

Other Stream-manipulating Functions

The function LEN computes the length of a given stream and is
thus a mapping from *o into NUM. CO'NC maps a pair of streams
[*I ,*-] (whose elements are of the samne type) into a single
stream *, ; /CO11C produces a single stream *-4 by "flattening"
an arbitrary stream of ntreams *. The operator DISTRIB takes
a tuplo of the form [*- , r ] and returns a stream of tuples
* [. , ( I with the value of type f "dintribut-d" over the stream
of r .

____W
.-. ".-.-- ____ ____ ____,____ ____ ____ ____ ____
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Miscellaneous Functions

The function #i (i=l,2...n) selects a component from a tuple;
i.e., I ID is the identity mapping
e -> ok.

Database Functions
If D is a database identifier, then if D names a function, then
D is that function in an FOL expression tD is its inverse. If
0 names a class then !D returns the stream of members of that
class (see constant functions).

. -


